Long-term expansion and sensitization of mechanosensory receptive fields in Aplysia support an activity-dependent model of whole-cell sensory plasticity.
نویسندگان
چکیده
Long-term changes in peripheral receptive field properties of mechanosensory/nociceptive neurons were investigated 1-3 weeks after noxious stimulation. Noxious stimuli consisted of a deep penetrating cut through the middle of the tail, strong electric shock applied to the tail surface, or a combination of deep and superficial tail stimulation. Action potentials evoked in the tail were monitored with intracellular electrodes in central somata of tail sensory neurons. Three long-term changes in receptive field properties were produced in the region of noxious stimulation: (1) mechanosensory thresholds decreased, (2) receptive field areas increased, and (3) the percentage of cells showing receptive field extension across the tail midline increased. Sizes and shapes of individual receptive fields did not vary during extensive testing of tails perfused with artificial seawater or during testing in cobalt solutions that block synaptic transmission. This stability of receptive field geometry, coupled with the observation that increased peripheral excitability in these cells does not increase receptive field size, suggests that long-term receptive field alterations involve growth of peripheral sensory processes. A model is proposed in which the signaling strength of the entire sensory cell increases in response to trauma of its receptive field. In this model long-term enhancement of central and peripheral sensory responsiveness is selectively triggered by activity dependent extrinsic modulation of the centrally located soma, which accelerates synthesis of growth-associated proteins used in collateral and regenerative sprouting of traumatized peripheral processes.
منابع مشابه
Effect of Norepinephrine depletion on induction of experience dependent plasticity in male rat barrel cortex
Introduction: Barrel cortex of rats is a part of somatosensory cortex, which receives information from facial whiskers. Vibrisectomy by sensory deprivation leads to some changes in the barrel cortex, which have been known as experience dependent plasticity. On the other hand, Norepinephrine (NE) and locus coeruleus, which is the main source of NE, influenced response properties of cortical bar...
متن کاملLong-term sensitization in Aplysia increases the number of presynaptic contacts onto the identified gill motor neuron L7.
We have used the gill and siphon withdrawal reflex of Aplysia to study the morphological basis of the persistent synaptic plasticity that underlies long-term sensitization. One critical locus for storage of the memory for sensitization is the set of monosynaptic connections between identified siphon sensory neurons and gill and siphon motor neurons. To complement previous morphological studies ...
متن کاملMechanosensory neurons innervating Aplysia siphon encode noxious stimuli and display nociceptive sensitization.
Numerous studies of learning and memory in Aplysia have focused on primary mechanosensory neurons innervating the siphon and having their somata in the left E (LE) cluster of the abdominal ganglion. Although systematic analyses have been made of the responses of these LE cells to mechanical stimulation of the tightly pinned siphon, little is known about corresponding responses when the siphon i...
متن کاملSite-specific sensitization of defensive reflexes in Aplysia: a simple model of long-term hyperalgesia.
Brief, noxious, electrical or mechanical stimulation of the skin of Aplysia produces enhancement of defensive reflexes triggered at the same site for at least a week after the noxious stimulation. This site-specific behavioral sensitization can be expressed as an increase in duration of the siphon-withdrawal reflex and as an increase in magnitude of the tail-withdrawal reflex. It is unlikely th...
متن کاملComparative analysis of hyperexcitability and synaptic facilitation induced by nerve injury in two populations of mechanosensory neurones of Aplysia californica.
Long-term effects of nerve injury on electrophysiological properties were compared in two populations of mechanosensory neurones in Aplysia californica: the J and K clusters in the cerebral ganglia and the VC clusters in the pleural ganglia. Following crush of cerebral nerves containing their axons, the cerebral J/K sensory neurones showed long-term changes that were quite similar to alteration...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 9 4 شماره
صفحات -
تاریخ انتشار 1989